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Abstract. A statistical formulation is developed for the number of particles in a given size 
range following a grinding action carried out over a period of time. The regeneration point 
method first used by Janossy in the study of cosmic rays is employed. Essentially, the method 
is based on the backward form of the Chapman-Kolmogoroff equation and is closely related 
to the theory of fluctuations in nuclear reactors. A probability balance equation is derived and 
converted to a more convenient form using a generating function. Some new multi-particle 
breakup functions are inuoduced and their properties discussed. It is shown that the mean value 
equation is identical to that conventionally used for grinding but the equations for the variance 
and higher moments are new. In a special we, we are able to solve h e  nonlinear, partial 
integrodifferential equation for the generating function and consmct the complete probability 
distribution of the pam'cle number in a given size range. The method can also be employed to 
study fibre breakup, of interest in the paper industry, and polymer degradation; it therefore has 
B wide range of application. 

~~ 

I. Introduction 

Substantial advances have been made in the theory of grinding and crushing in recent years. 
The review by Austin (1971) whilst relatively old, remains an excellent introduction to the 
subject. There are. in fact, two distinct aspects of the grinding problem, which we pose as 
follows: given an initial collection of particles with a prescribed size distribution, what is 
the new size distribution after a specified grinding time? In order to solve this problem it 
is b t  necessary to know how an individual particle breaks into its component parts due 
to a single grinding action. That is to say, how many fragments are produced and what is 
their size distribution. With this knowledge, it is then necessary to calculate the sum total 
effect due to many such grinding actions in various stages of comminution. 

As far as the single grinding action is concerned, we need to construct a function 
@(U, U') du' which is the probability that a particle of initial volume U will, after a grinding 
action, lead to a number of new particles with volumes distributed in the range (U', u'+du'). 
Some early work in this area can be found in Epstein (1947) and Kottler (1950). Both of 
these authors also make some attempts to sum the multi-breakage processes in an effort to 
prove that the distribution of volumes becomes log-normal in the long time limit. A recent 
review of fragmentation models is to be found in Englman (1991), with specific details in 
Demda and Flyvbjerg (1987). 

As far as the evolution of the size distribution with time is concerned, Fillipov (1961) 
developed a method originally proposed by Kolmogoroff (1941), in which the process 
of breakage is assumed to be essentially stochastic. Then, using the theory of Markov 
processes, Fillipov derives equations  for the mean value and the variance of the size 
distribution  as^ a function of grinding time. Subsequent work has concentrated on solving 
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the grinding equation for the mean value using self-similar solutions. The work of Kapur 
(1972), Gupta and Kapur (1975). Peterson and Scotto (1985) and Peterson (1986) should 
be noted in this respect. However, it is important to observe that the processes of breakup 
also occur in other areas of science and engineering, e.g. in floc breakage in agitated 
suspensions (F‘andya and Spielman 1983) and in fibre and polymer breakup (Goren 1968, 
Ziff and McGrady 1986). The work of Goren, which deals with the distribution lengths in 
the breakage of fibres or linear polymers, also employs self-similarity. However, Pandya and 
Spielman actually solve the balance equation for the volume distribution of flocs numerically 
and compare their results with experiment. Ziff and McGrady offer some explicit analytic 
solutions for some very simple models of breakup as do Bak and Bak (1959) and Meyer 
et al (1966). A further advance was made by Williams (1990) who was able to solve 
exactly the grinding equation for the mean value for a general class of grinding functions 
and breakage rates using methods originally developed in neutron transport theory. 

The purpose of the present work is to complement, clarify and extend the work 
OF Filippov (1961). The importance of Filippov’s work cannot be over-stated since he 
established a fundamental approach which enables mean values and the fluctuations about 
that mean to be studied. He also observed the curious ‘loss of mass’ phenomenon which 
has puzzled a number of workers in this field and in some analogous fields (Corngold 
and Williams, 1991). We reconsider the stochastic formulation of grinding in terms of the 
backward form of the Chapman-Kolmogoroff equations. Such a formulation has a number 
of advantages, not least being that it illustrates the physics of the problem very clearly. It 
also clarifies the role of the breakup function and highlights the approximations inherent in 
the standard approach based on mean values. 

2. A simple stochastic model of grinding 

This paper is devoted to the development of a general theory of grinding using methods of 
probability balance based on the regeneration point method. However, because that theory 
is very general, we feel that it will be useful to outline the approach in a simple way to 
set the scene for the generalization to come. In order to do this, we consider a particle 
which on each grinding action can break into two pieces, i.e. binary breakup. To be more 
precise, if the initial particle has a volume U, then after breakup there will be two particles of 
volumes uI and uz such that v = v ,  + u2. The actual magnitudes of U, and ~2 are governed 
by a probability distribution which, for the sake of example, we take to be uniform. Thus 
the product particles will have volumes lying with equal probability between zero and the 
maximum value U. After some time, a particle size distribution will build up in the sense 
that H ( v o  + U, t)dv will be the number of particles in the size range v to U + du at time 
t ,  if there was one particle of volume uo at t = 0. Associated with this is a fluctuation, 
arising from the fact that particles are created randomly in size and at random times. Our 
purpose is to develop a method for calculating the probability distribution associated with 
that randomness. 

The complete details are given in the next section but, to illustrate the procedure, we 
consider how to calculate the probability distribution associated with the total number of 
particles present at a given time t after the commencement of grinding. We also assume that 
the grinding process is characterized by a grinding rate + such that + exp(-& - t’))  dt’ is 
the probability that a particle will experience a grinding action in dt’ and undergo no further 
grinding action in the subsequent time t - r’. If we further define pa(u,  t )  as the probability 
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that there are n particles present (regardless of size) at time t ,  when there was one particle 
of volume U at t = 0, then 

The term du'/u arises from our assumption about uniform breakup in size. 
If we define the generating function G(ulZ, t )  such that 

"=O 

and then multiply equation (1) by Z" and sum over n,  the result reduces to 

It is clear that p,(v,O) = S,,,,, i.e. at t = 0 there is one particle present, and so 
G(ulZ, 0) = Z. Differentiation of equation (3) with respect to t simplifies it to 

[i +$(U)] G(ulZ, t )  = +(U)/" s G ( u ' [ Z ,  t')G(u - u'lZ, r ' ) .  (4) 
o u  

This is a nonlinear integro-differential equation which, in general, is difficult to solve. 
However, in the special case of $(U) = au, i.e. the grinding rate is proportional to the 
particle volume, it is readily shown that a solution which satisfies the initial conditions is 

But this is the generating function of the Poisson distribution and leads to 

e-'"' (aut)'-' 

(n - I)! i) = n > 1. 

The mean value of n is ii = 1 +aut which, as we expect, grows linearly with time at a rate 
determined by 4. Similarly the variance U' = Q U Z .  

We stress that different forms of $(U) lead to other distributions for pn. 

3. A stochastic formulation of grinding 

We base our approach to the grinding problem on a probability balance method devised by 
Janossy (Bharucha-Reid 1960) for cosmic-ray-shower distributions. Janossy described this 
approach as the regeneration point or first collision method. It was subsequently extended 
to cover problems in neutron transport theory by Pal (1961) and by Bell (1965) and also to 
radiation damage by Williams (1977a). 

Let P,(uIR,t) be the probability that, if there is one particle of volume U at t = 0, 
there will, as a result of grinding, be n particles with volumes lying in the volume range 
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R = (UI, uz)  at time t later. We also introduce +(U) as the grinding rate [s-]] for particles 
of volume U. We further define 

X ; ( U  + V I ,  UZ, . . . , U;) dui d ~ z  . . .dui (7) 

as the probability that the breakage of a particle of volume U leads instantaneously to i new 
particles with volume in the ranges (UI, V I  fdul), ( u ~ ,  u2 + duz), . . . , (vi. U; +dui). 

Finally, we define the A function as 

U E R  [A u $ R .  
A(u E R )  = 

We now use Janossy's first collision method to formulate a balance equation for P,,. We 
write 

we set 

I = A(u E R)&,I~-"")' 

and define 

I I  = dui XI(U + UL)P.(UIR, t') s 
IV  = / ~ ~ I / ~ u z / ) ~ v ) x ~ ( u +  U I . U Z , U ~ )  P,,(ulR,t')P,,(~lR,t')P,,(ulR,t') 

n , + n r + n r a  

(13) 

etc. 
The physical meaning of these terms is as follows. Z is the probability that no grinding 

action takes place, i.e. the initial particle is unchanged. To explain 11, I IZ  and I V ,  etc, 
we recall that 

+(u)e-@(")(r-Z') dt' (14) 

is the probability that a particle will experience a grinding action in di' and undergo no 
further grinding action in the subsequent time t - t'. Thus terms I I ,  I I I .  I V ,  etc, are the 
probabilities that, as a result of grinding, 1, 2, 3, etc new particles will be produced. That 
is to say, at some general time t', as a result of nl particles of volume VI. nz particles of 
volume UZ, etc. such that U] + uz + . . . = U, and nl + n2 + . . . = n, there will still be 
n particles in R at a time t later. Each of the events, I ,  I I ,  I I I ,  I V ,  etc are mutually 
exclusive and so must be added to obtain P,. 

The probability balance equation (9) can be written more concisely in terms of the 
generating function 

m 

G(ulZ, R ,  t )  = Z"P,(uIR, t).  
"=O 
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Multiplying equation (9) by Z" and summing over n,  leads to 

1223 

G(ulZ, R ,r )  = A(u E k)Ze-Q(U)' + ~ ( ~ ) / ' d t ~ e - ~ ( ~ ) ( ' - ' ' )  
0 

x [ / d u l x ~ ( u - +  u~)G(ul lZ ,R , t ' )  

+/dul/duzxZ(u -+ u ~ , u ~ ) G ( u ~ l Z ,  R,t')G(uzlZ. R.t') 

+ /dui / duz / du3 x 3 ( ~  -+ V I ,  UZ. ~ 3 )  

X G ( U I I Z . R , ~ ' ) G ( U ~ I Z .  R,t ')G(u31Z,R,t')+...  . (16)  1 
This integral equation can be simplified by differentiating with respect to t ,  leading to 

[:+@(U)] G(uIZ,R, t )  =b(u)  ~ U I X I ( V +  U I ) G ( U I I Z , R , ~ )  IS 
+/dvi/duZxz(u-+ ui,u~)G(u~lZ,R,r)G(u~lZ,R,t) 

+ / dui / dUz / d7~3 xdu  + VI, ~ 2 ,  3 ~ 3 )  

(17) 1 x G(uIIZ ,  R , t )G(u~lZ ,R, t )G(u3lZ ,  R , t ) + . . .  

which is an integro-differential equation for the generating function G(. , .). There is also 
an initial condition 

G(ulZ, R ,  0)  = A(u E R)Z.  (18) 

Since an exact solution of equation (17) is unlikely, except in very special circumstances, 
we shall content ourselves with deriving the equations for the mean value and the variance. 
From equation (15), we note that 

Thus the variance is 

( N 2 )  - (N)' = G"(1) + G'(1) - (G'(I)}' (21) 

where we have used an obvious abbreviated notation. 
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Physically, (y) is the mean number of particles at time t in the volume range R given 
that there was one particle of volume U at t = 0. More precisely, we may write 

( N ( u [ R ,  1 ) )  = duo H ( u  + UO: t )  (22) s, 
where H(u + UO; t)duo is the number of particles in the volume range (UO, U,, +duo) at t 
due to one particle of volume U at t = 0. H ( u  + IJO; t )  plays the role of a Green function 
as we shall demonstrate below. 

The mean square number of particles can be written 

(N(uIR, 0’) = (N(uIR, t ) )  + / dui / duznz(u + V I ,  uz; (23) 
R R 

where nz(. . .) is a doublet distribution function. 
Differentiating equation (17) with respect to 2 and using equation (19), we find 

(24) I +!//XJ(NI + NZ -t N3)du1 duzdu3 + ... 
where we use the subscript to denote the integration variable. It is clear that, by rearranging 
the dummy integration variable, we can write equation (24) in the form 

[:+@(U)] ( N ( 4 R t ) )  = PI@(~(N(uIR,~))  +@(u)S”du‘W(U..‘)(N(u’IR,r)) 0 (25) 

where 

W ( U ,  U’) = duz [XZ(U + U‘, U Z )  + X Z ( U  + UZ, U’)] 

+ duz / 
+ x3(u + u3, u2, U’)] + . ’ ’ 

[ X ~ I J  + U’. UZ, u3) + x d u  + UZ. U‘, u3) 

s 
(26) 

and we have set x l ( u  + U‘) = p l S ( u  - U’) as required physically. We shall subsequently 
set pi  = 0 on the assumption that the particle always breaks on grinding. 

Let us now introduce equation (22) into equation (25), whence 

[$+@(U)] H ( u  + u 0 ; t )  =@(U) du’w(u,u‘)H(u’+ u 0 ; t ) .  (27) I’ 
Consider the adjoint of equation (27) with respect to the U variable, namely 

[: +@(U)] H + ( u  + u0; I)  = du’W(u’, u)@(u’)H+(u‘ + uo; t ) .  (28) Jc9 
But from the reciprocity theorem (Lanczos 1961), it may be shown that 

H + ( U  + uo; f) = H(u0 + U ;  t )  (29) 
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whence equation (28) becomes 

[: +@(U)] X(UO + U ;  t )  = du’w(u’, u)q+(u’)H(uo + U’; t )  + S(u - u0)S(t)  (30) LW 
where we have added the source term to account for the initial condition. 

Equation (30) is identical to the grinding equation for the mean number of particles 
used by earlier workers in the field. The derivation by the method discussed above has the 
advantage of giving a more detailed definition of the breakup function w ( u , ’ u )  in terms 
of its multi-particle components. It also enables us to obtain an expression for the mean 
square, which we do by differentiating equation (17) twice with respect to Z. The result 
can be written 

[:+@(U)] V(uIR,t)  = @ ( ~ ) ~ “ d u ’ w ( ~ , u ’ ) V ( u ’ l R , t )  + W ( 4  

X Z N I  Nzdul du2 + 
x [ 
+/// J x ~ ( N I  N ~ + N I  N3 + NI Nz+ N2N4+ N ~ N ~ + N z N ~ )  dul duz dv3 dud 

+...I (31) 

where V = (N(N - 1)). However, because of equation (25), V in equation (31) can also 
be replaced by (N’) with different initial condition. By some manipulations, equation (31) 
may be recast into the following form, namely 

[$+@(U)] V(uIR,t)  =~$(u)j””du‘&(u, 0 u’)V(u’lR,t) 

X ~ N I N Z  + NlN3 + NZN3) dul du~du3 

+2q+(u)Jdu1 JdUz(N(uiIR,t))(N(vzIR,f))K(u; UI. u d  (32) 

where 

K ( ~ ; ~ I , Y ) = x z ( u +  U I , U Z ) +  d u 3 [ ~ 3 ( ~ +  U I , V Z , ~ ~ ) + X ~ ( U +  V I , ~ ~ , U Z )  J 
+ x3(u + ~ 3 ,  ~ 2 ,  u d l +  1 d ~ 3  / du4 [x4(u + U I  I U Z ,  u3, u4) 

+ x4(u --f VI, u4, U3,UZ) + x4(u + UI, U3, u2, U41 + x4(u + u4, u2. u3, V I )  

+ x 4 ( ~ + ~ 3 > u 4 . ~ 1 , ~ 2 ) + x 4 ( u +  U 3 r U 2 r U I . V 4 ) l + . . ‘ .  (33) 

Now if we write equation (27) as 

[; + m] H ( u  --f uo; t )  = S ( u  - vO)S(t) (34) 

then equation (32) may be written 
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where 

Q ( u , t )  =2Jdu1  Jduz(N(u~IR,t))(N(~zlR,f))K(u: U I , U Z ) .  (36) 

It is quite clear then, from the properties of the Green function, that (Williams 1977b, Pazsit 
1987) 

We therefore have the variance directly in terms of the one-particle Green function. In this 
section therefore, we have derived the mean value equation from its stochastic counterpart 
and shown how to calculate the associated uncertainty in the mean via the variance. We 
shall explore various aspects of these equations below. 

4. The multi-particle breakup functions 

As indicated above, xi defines the volume distribution when the initial particle breaks up 
into i separate parts. Now it is clear that xi must obey certain constraints. For example, 

i " d u ' u ' o ( u ,  U') = U 

and hence that equation (30) leads to 

(44) 

i.e. conservation of volume in the system. 
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4.1. Approximate kernels 

It is convenient in many practical cases Peterson 1986) to write U,, in the following 
homogeneous form: 

Physically, this implies that the volumes of the broken particles are chosen from the 
distributions f, g, h etc, subject to v = u1 + y + u3 + . . . + vi. 

To be consistent with equation (43), we must have 

etc. 

that 
If equations (46) to (48) are inserted into equation (26) for @(U, U'), it is readily shown 

-f($) 1 
U (53) 

i.e. if the individual fi, gi, hi, etc. are homogeneous, then w ( u ,  U') is expressible in 
homogeneous form also. 

A few special cases are worthy of note. For example, if the particle always breaks into 
'the same number of parts, n = no, then pn = &..o and @(U, U') would be given by one 
term in equation (26). Thus, if no = 2, we would have 

@(U, U') = %?(U, U') + 0 2 ( u ,  v - U') (54) 

and so on. 
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Suppose that the distribution functions of emitted particles were all uniform, i.e. f, 
g, h, etc, are constants independent of u'/u.  Then, taking into account the normalization 
conditions, we find 

Suppose further that p .  is given by the Poisson law, such that 

The reason for the unusual factor in equation (56) is due to the normalization requirement 
of equation (44). which leads to 

With p .  from equation (56). equation (55) may be summed to give 

exp[ -iiu'/u] 
1 - (ii + 1)e-E 

u o ( u ,  U') = 

Whether this breakup function has any practical value is not known, but it has a number 
of interesting features and is algebraically simple. It also resembles closely the case of the 
randomly broken ring discussed by Englman (1991) in his review. 

Another approach to the modelling of the xi is to assume that, on average, the masses 
of the individual components of the particle are conserved. This may be done by writing 
for i > 2 

If x i  is in this form, it leads to a particularly simple form for the generating function 
equation as defined by equation (17), namely 

If we differentiate equation (60) with respect to 2, we find 

The adjoint Green function associated with equation (61) is 
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Since 
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we must have 

i l ’ d x x g i ( x ) = l .  

But in order to satisfy equation (32), we must also satisfy 

Several experimental results (Pandya and Spielman 1983) have suggested that a reasonable 
form for g ( x )  is 

It is then easy to show from equations (64) and (65) that 

for i 
large i, g ; ( x )  -+ l/ix. The kernel @(U’, U) is therefore 

2. Whence gz(x )  = 1, g&) = 1/2x‘i2, g4(x! = 1/3x’I3, gj(x)  = 1/4x3l4 and, for 

Unfortunately, this sum cannot be carried out explicitly, even with the Poisson form for 
pi. Nevertheless, it is instructive to note that the Randolph-Ranjan model (Randolph and 
Ranjan 1977) predicts 

and Reid’s model (Reid 1965) predicts 

I v -5i3 
w(u’v) = - (-) 

3u’ U’ 

which are similar in form to equation (68). 
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5. Mean value and variance 

In section 3, it was shown that explicit expressions can be given for the mean value ( N )  
and the variance 

u2 = (NZ)  - ( N ) 2 .  

Here we explore the form of ( N )  and u2 for some simple models. For simplicity we assume 
binary breakup of the particles. This is not necessary but eases the algebra without losing 
the essence of the problem. In this case, from equation (26), we find 

(69) 
1 

@(U, U') = -{oz(u, U') + wz(u, U - U')]. 
U 

Using the approximation introduced in equation (46) leads to 

The equation for the Green function H is therefore 

Assume now that the particle breakup occurs randomly between (0, U) whence f z ( x )  = 1. 
Then 

where we have suppressed uo in H(. . .). Defining the Laplace transform of H ( u ,  t )  as 

we can solve equation (72) to obtain 

(73) 

In the special case of @(U) = au, we can evaluate the integral in equation (74) and perform 
the Laplace inversion to get 

H(u0 --f U ;  t )  = S(u - uO)e-""Or +at[2+a(vo - u)t]e-uu'. (75) 

It is readily verified that 

L"duuH(u0 + U ;  t )  = IJO 
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as expected from conservation. Similarly, the average number of particles at time I is 

N ( t )  = duo H ( u  + UO; f )  = 1 +aut (77) 

i.e. a linear increase as grinding proceeds. N ( t )  is actually (N(uIR,  I)) when R = (0, U). 
If we wish to calculate (N2), we return to equation (37) and note that 

l” 

Q(v,r )  = 2JdUi ~ d u ~ ( N ( u ~ l R , t ) ) ( N ( u ~ l i ( , r ) ) ~ ~ ( ~  + UI. U Z )  (78) 

where 

1 
= - f2 (:) S(u - U1 - %). 

U 

But if R = (0, U), we find 

= 2 [” $(I + au1t)(l + (U - Ul)ar) 
.” 

1 2 2 2  = 2[1 +aut + zu U t 1. 

(79) 

From which using equation (37) 

(N(tI2)  = ( N ( t ) )  + Z r d t o  /“duo H ( u  + uo; t - to)avo[l + avoto + p 1 2 2 2  uotol. (81) 
0 0 

After some tedious but simple algebra, we obtain 

&I)  = ( N ( # )  - ( N ( r ) ) 2  =aut .  

(This integration was checked by MATHEMATICA.) 
The fact that the variance and mean are related by 

( N )  = 1 + U 2  (83) 

suggests that the process is Poisson. In fact, if we return to equation (17) and write it for 
binary splitting, we obtain 

where we have abbreviated G(ul2, R ,  t )  as G(u, t ) .  If we set f = 1 and + = uu, 
equation (78) reduces to 

[ ~ + a u ] G ( u , f )  = a ~ ” d u ’ G ( u ’ , t ) G ( u - u ’ , t ) .  (85) 
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This is a nonlinear, integro-differential equation, but one which can be solved exactly as 
follows. Define the Laplace transform of G as 

and apply it to equation (85). It is readily seen that the equation reduces to 

[; -.;I E ( p ,  t )  = &*(a, t ) .  

This partial differential equation can be solved by the method of characteristics (Sneddon 
1957) and leads to 

For the initial condition, which is 

G(u,  0) = A(u 6 R)Z 

we have set R = (U], q), i.e. some volume range in the overall range (0, U), Equation (87) 
is amenable to Laplace inversion but for simplicity, we take U] = 0 and vz = 00, when 

which is indeed the generating functionof a Poisson distribution and agrees with the simple 
results in section 2. 

6. Summary and conclusions 

The grinding of material is essentially a random process. For this reason we have gone 
beyond the usual investigations of grinding, which deal only with the mean value, to show 
how a quite general equation for the probability distribution of the number of particles in 
a given size range may be calculated. A probability balance equation is constructed and 
converted to an equation for a generating function from which the mean, variance and higher 
statistical moments can be calculated. In carrying out the formulation, it has been necessary 
to define new functions describing the probability of breakup of a particle into a number of 
smaller paas. These multi-particle breakup functions have to satisfy certain conservation 
conditions and we have elaborated on these. 

A particularly useful measure of the fluctuations can be obtained from the variance. 
We have constructed an equation for this and shown how its solution can be obtained in 
terms of a one-particle Green function which also defines the mean value. In fact, all higher 
moments can ultimately be defined in terms of this Green function. Such a procedure was 
first noted in the neutron transport field and later for radiation damage. The present paper 
demonstrates once again the power of the method in grinding dynamics. 

We have also discussed some possible new breakup functions using multi-particle 
breakage based on a Poisson distribution. A rather simple model of breakup which we 
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call the statistical model, also seems useful and relates in general terms to models already 
proposed on phenomenological grounds by Randolph and Ranjan and by Reid. 

As an example of the statistical fluctuations, we consider a model of breakup in which 
the particle breaks into two parts at each grinding action. Furthermore, we assume that the 
probability of breaking into a given size range is uniform, i.e. any size in the range up to 
the initial size is equally likely. Finally, we assume that the grinding rate is proportional 
to particle size. This model, which is not unrealistic, allows a complete solution for the 
generating function and hence for the probability distribution. In the special case of the 
total number of particles present in the system, regardless of size, we have derived this 
probability distribution and shown it to obey the Poisson law. Other forms of breakup 
function and grinding rate will lead to non-Poisson statistics which can be obtained using 
the methods developed here. 
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